

FORM TP 2012153

MAY/JUNE 2012

CARIBBEAN EXAMINATIONS COUNCIL

ADVANCED PROFICIENCY EXAMINATION

CHEMISTRY

UNIT 1 - Paper 02

2 hours 30 minutes

READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

- 1. This paper consists of SIX compulsory questions in TWO sections.
- 2. Section A consists of THREE structured questions, one from each Module. Section B consists of THREE extended response questions, one from each Module.
- 3. For Section A, write your answers in the spaces provided in this booklet. For Section B, write your answers in the answer booklet provided.
- 4. All working must be shown.
- 5. The use of non-programmable calculators is permitted.
- 6. A data booklet is provided.

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.

SECTION A

Answer ALL questions in this section.

Write your answers in the spaces provided in this booklet.

MODULE 1

FUNDAMENTALS IN CHEMISTRY

(b) Intermolecular forces of attraction influence the physical properties of substances, s as, their melting points, boiling points, and solubility in polar and non-polar solver. Consider the structure of the following substances and answer the questions where follow. O HHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
(b) Intermolecular forces of attraction influence the physical properties of substances, so as, their melting points, boiling points, and solubility in polar and non-polar solvent Consider the structure of the following substances and answer the questions who follow. O H H H H H H H H H H H H H H H H H H
(b) Intermolecular forces of attraction influenc the physical properties of substances, s as, their melting points, boiling points, and solubility in polar and non-polar solven. Consider the structure of the following substances and answer the questions whe follow. O H H H H H H H H H H H H H H H H H H
(b) Intermolecular forces of attraction influenc the physical properties of substances, s as, their melting points, boiling points, and solubility in polar and non-polar solven. Consider the structure of the following substances and answer the questions whe follow. O H H H H H H H H H H H H H H H H H H
follow. O H H H H H H H H H H H H H H H H H H
H ₃ C-C-CH ₃ H ₃ C-C-C-H H OH H H H H (A) propanone (B) 1-propanol (C) butane (i) Place substances A, B and C in order of increasing boiling point (lowest boil point first)
 (A) propanone (B) 1-propanol (C) butane (i) Place substances A, B and C in order of increasing boiling point (lowest boil point first)
point first)
(ii) Identify the intermolecular attractive forces found in EACH of the substantin (b) (i) above.
[3 mar

GO ON TO THE NEXT PAGE

(c) Complete Table 1 by indicating whether EACH of the substances, potassium bromide, acetone and solid iodine are soluble or insoluble in the two solvents, water (polar solvent) and toluene (non-polar solvent).

TABLE 1: SOLUBILITY IN POLAR AND NON-POLAR SOLVENTS

Substance	Water (Polar)	Toluene (Non-polar)
Potassium bromide		
Acetone		Soluble
Solid iodine		

[5 marks]

Total 15 marks

MODULE 2

KINETICS AND EQUILIBRIA

2.	(a)	Describe, using FIVE essential steps, an experiment which can be used to d solubility product of Ca(OH) ₂ at room temperature.	etermine the
			[5 marks]
	(b)	The solubility product, K_{sp} , at 25 °C for calcium carbonate (CaCO ₃) was $5.0 \times 10^{-9} \text{ mol}^2 \text{ dm}^{-6}$.	found to be
		(i) Defin the term'solubility product'.	
			[1 mark]
		(ii) Write the equation for the dissociation of calcium carbonate.	г шагк ј
			[1 mark]
		(iii) Write the solubility constant expression for calcium carbonate.	
			[2 marks]

(Calcul	ate the solubility of calcium carbonate ($K_{sp} = 5.0 \times 10^{-9} \text{ mol}^2 \text{ dm}^{-6} \text{ at } 25^{\circ}\text{C}$) in
	(i)	pure water
		[2 marks]
	(ii)	0.1 mol dm ⁻³ Na ₂ CO ₃ solution.
		[3 marks]
-	What i	s responsible for the difference between the solubilities in (c) (i) and (c) (ii) above?
-		[1 mark]
		Total 15 marks

MODULE 3

CHEMISTRY OF THE ELEMENTS

3.	(a)	Desc	ribe the reaction of EACH of the following halogens with hydrogen.				
		(i)	Fluorine				
((ii)	Chlorine				
		(iii)	(iii) Bromine				
					[3 marks]		
		obsei	ed hot wire (exceeding 300 °C) was quickly placed into each test tube in turn. The ervations were recorded in Table 2. TABLE 2: OBSERVATIONS FOR HYDROGEN HALIDES				
		Γ	Test Tube	Hydrogen Halide	Observation		
			I	Hydrogen chloride	No change		
			II	Hydrogen bromide	Slight brown colouration seen		
			III	Hydrogen iodide	Copious violet fumes seen		
		(i)					
			Test Tube	e III			
			1050 1400		[2 marks]		
		(ii) Write a balanced equation to represent the reaction occurring i					
		(iii)	Using the relevant information provided in the data booklet, explain the trin the observations recorded in Table 2.				
					[2 marks]		

(iv)	What would you observe if hydrogen fluorid was used in the experiment?				
	[1 mark]				
Concentrated sulphuric acid was carefully added to test tubes containing sodium chloride and sodium bromide respectively.					
State v	what would be observed in the case of				
(i)	sodium chloride				
	[1 mark]				
(ii)	sodium bromide.				
	[2 marks]				
	roducts of the reaction in (c) (i) above were passed into water and the resultant on treated with AgNO ₃ (aq) followed by aqueous ammonia.				
State v	what would be observed.				
	[2 marks]				
	Total 15 marks				

SECTION B

Answer ALL questions.

Write your answers in the separate answer booklet provided.

MODULE 1

FUNDAMENTALS IN CHEMISTRY

4. (a) State THREE factors which affect the firs ionisation energy of the elements.

[3 marks]

- (b) Write the s, p and d electronic configuration of the following species:
 - (i) Cu
 - (ii) O²⁻
 - (iii) Mn²⁺
 - (iv) Fe^{3+}
 - (v) Ca [5 marks]
- (c) Explain how ionization energy data provide evidence for shells and subshells.

[3 marks]

(d) Study Figure 1 which shows the logarithm to the base ten of the successive ionisation energies of an element and answer the questions which follow.

Figure 1. Log_{10} of ionisation energies of an element

(i) Write the electronic configuratio of the element represented in Figure 1.

[1 mark]

(ii) Suggest an identity for the element.

[1 mark]

(iii) Write a **balanced** equation to illustrate the firs ionisation of the element.

[2 marks]

Total 15 marks

MODULE 2

KINETICS AND EQUILIBRIA

5. (a) (i) Copy and complete Table 3 to show the type of equilibrium for the selected equilibrium systems.

TABLE 3: SELECTED EQUILIBRIUM SYSTEMS

System Number	Equilibrium System	Type of Equilibrium
	Saturated solution of a salt at	
1	room temperature	
	The vertical balancing of a ruler	
2	on a fla surface	
3	Heating of limestone at 800 °C	

[3 marks]

- (ii) State TWO characteristics of the equilibrium represented by System 1 in Table 3. [2 marks]
- (b) Substances A, B, X and Y form an equilibrium mixture represented by the equation below.

$$aA + bB \Longrightarrow xX + yY$$

(i) Write the expression for the equilibrium constant.

[1 mark]

(ii) What deduction can be made when the equilibrium constant is much greater than 1? [1 mark]

(c) When solid bismuth (III) chloride, BiCl₃ is added to water, a white precipitate BiOCl is produced. These compounds form an equilibrium mixture represented by the equation

$$BiCl_3(aq) + H_2O(l) \Longrightarrow BiOCl(s) + 2HCl(aq)$$
.

- (i) Explain why the white precipitate, BiOCl, disappears on the addition of aqueous HCl to the equilibrium mixture. [2 marks]
- (ii) Explain what would be observed if a large volume of water was added to the equilibrium mixture. [3 marks]
- (d) Phosphorus(V) chloride, PCl₅, decomposes at 250 °C and forms an equilibrium mixture represented by the equation

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g).$$

One equilibrium mixture at this temperature contains PCl₅ and PCl₃ at concentrations of 0.20 mol dm⁻³ and 0.010 mol dm⁻³ respectively.

Given K_c at 250 °C = 0.19 mol dm⁻³, calculate the concentration of Cl_2 in the mixture. [3 marks]

Total 15 marks

MODULE 3

CHEMISTRY OF THE ELEMENTS

- **6.** (a) The elements sodium to argon (Period 3) are often used to illustrate periodic trends.
 - (i) State the general trend in atomic radii in moving from left to right across Period 3 (from sodium to argon). [1 mark]
 - (ii) Give a reason for the trend stated in (i) above.

[1 mark]

(b) Each element in Period 3 exhibits one of three structures: simple molecular, giant metallic or giant molecular.

Which structure is exhibited by EACH of the following elements in Period 3?

- (i) Magnesium
- (ii) Silicon
- (iii) Sulphur

[3 marks]

(c) Study Figure 2 which shows the variation in melting points across the elements in **Period 3** and answer the question that follows.

Figure 2. Variation in melting points across Period 3

With reference to structure and bonding, account for the variation in melting points shown in the figure. [3 marks]

- (d) Sketch a similar diagram to Figure 2 given in 6 (c) to illustrate the variation in the electrical conductivity of the elements in Period 3. [2 marks]
 - (ii) With reference to structure, explain the variations shown on your sketch in (d) (i) above. [3 marks]
- (e) (i) Describe the reaction which occurs when magnesium is heated in dry chlorine gas. [1 mark]
 - (ii) Write an equation to represent the reaction in (e)(i) above. [1 mark]

Total 15 marks

END OF TEST

IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS TEST.